E-Print Archive

There are 4291 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME View all abstracts by submitter

Tingyu Gou   Submitted: 2020-06-22 19:50

Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic evolution of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME experiences two distinct phases of enhanced acceleration, an impulsive one with a peak value of ~5 km s-2 followed by an extended phase with accelerations up to 0.7 km s-2. The two-phase CME dynamics is associated with a two-episode flare energy release. While the first episode is consistent with the "standard" eruption of a magnetic flux rope, the second episode of flare energy release is initiated by the reconnection of a large-scale loop in the aftermath of the eruption and produces stronger nonthermal emission up to γ-rays. In addition, this long-duration flare reveals clear signs of ongoing magnetic reconnection during the decay phase, evidenced by extended HXR bursts with energies up to 100-300 keV and intermittent downflows of reconnected loops for >4 hours. The observations reveal that the two-step flare reconnection substantially contributes to the two-phase CME acceleration, and the impulsive CME acceleration precedes the most intense flare energy release. The implications of this non-standard flare/CME observation are discussed.

Authors: Tingyu Gou, Astrid M. Veronig, Rui Liu, Bin Zhuang, Mateja Dumbovic, Tatiana Podladchikova, Hamish A. S. Reid, Manuela Temmer, Karin Dissauer, Bojan Vrsnak, Yuming Wang

Publication Status: accepted for publication in ApJL
Last Modified: 2020-06-23 11:18
Go to main E-Print page  Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection  A new method for estimating global coronal wave properties from their interaction with solar coronal holes  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University