E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23 View all abstracts by submitter

Ram Maurya   Submitted: 2020-06-24 21:40

We analyse the topology of photospheric magnetic fields and sub-photospheric flows of several active regions (ARs) that are observed during the peak to descending phase of the solar cycle 23. Our analysis shows clear evidence of hemispheric preferences in all the topological parameters such as the magnetic, current and kinetic helicities, and the 'curl-divergence'. We found that 68%(67%) ARs in the northern (southern) hemisphere with negative (positive) magnetic helicities. Same hemispheric preference sign is found for the current helicities in 68%(68%) ARs. The hemispheric preferences are found to exist statistically for all the time except in few ARs observed during the peak and the end phases of the solar cycle. This means that magnetic fields are dominantly left(right)-helical in scales smaller than individual ARs of northern(southern) hemisphere. We found that magnetic and current helicities parameters show equator-ward propagation similar to the sunspot cycle. The kinetic helicity showed similar hemispheric trend to that of magnetic and current helicity parameters. There are 65%(56%) ARs with negative (positive) kinetic helicity as well as divergence-curl, at the depth of 2.4 Mm, in the northern (southern) hemisphere. The hemispheric distribution of the kinetic helicity becomes more evident at larger depths, e.g., 69%(67%) at the depth of 12.6 Mm. Similar hemispheric trend of kinetic helicity to that of the current helicity supports the mean field dynamo model. We also found that the hemispheric distribution of all the parameters increases with the field strength of ARs. The topology of photospheric magnetic fields and near surface sub-photospheric flow fields did not show good association but the correlation between them enhances with depths which could be indicating more aligned flows at deeper layers of ARs.

Authors: R. A. Maurya and A. Ambastha
Projects: None

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2020-06-27 21:00
Go to main E-Print page  Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions  Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University