E-Print Archive

There are 4257 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Case study of multi-temperature coronal jets for emerging flux MHD models View all abstracts by submitter

Reetika Joshi   Submitted: 2020-07-16 11:24

'Hot coronal jets are a basic observed feature of the solar atmosphere whose physical origin is still actively debated. We study six recurrent jets that occurred in active region NOAA 12644 on April 4, 2017. They are observed in all the hot filters of AIA as well as cool surges in IRIS slit–jaw high spatial and temporal resolution images. The AIA filters allow us to study the temperature and the emission measure of the jets using the filter ratio method. We studied the pre-jet phases by analyzing the intensity oscillations at the base of the jets with the wavelet technique. A fine co-alignment of the AIA and IRIS data shows that the jets are initiated at the top of a canopy-like double-chambered structure with cool emission on one and hot emission on the other side. The hot jets are collimated in the hot temperature filters, have high velocities (250 km s-1) and are accompanied by cool surges and kernels that both move at 45 km s-1. In the pre-phase of the jets, we find quasi-periodic intensity oscillations at their base that are in phase with small ejections; they have a period of between 2 and 6 min, and are reminiscent of acoustic or magnetohydrodynamic waves. This series of jets and surges provides a good case study for testing the 2D and 3D magnetohydrodynamic emerging flux models. The double-chambered structure that is found in the observations corresponds to the regions with cold and hot loops that are in the models below the current sheet that contains the reconnection site. The cool surge with kernels is comparable with the cool ejection and plasmoids that naturally appear in the models.'

Authors: Reetika Joshi, Ramesh Chandra, Brigitte Schmieder, Fernando Moreno-Insertis, Guillaume Aulanier, Daniel Nóbrega-Siverio, and Pooja Devi
Projects: None

Publication Status: Accepted
Last Modified: 2020-07-18 21:49
Go to main E-Print page  Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares  The STIX Aspect System (SAS): The Optical Aspect System of the Spectrometer/Telescope for Imaging X-Rays (STIX) on Solar Orbiter  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The origin of quasi-periodicities during circular ribbon flares
Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection
An Eruptive Circular-ribbon Flare with Extended Remote Brightenings
Additivity of relative magnetic helicity in finite volumes
3D propagation of relativistic solar protons through interplanetary space
Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer
Comparison of Enhanced Absorption in He I 10830 Ĺ in Observations and Modeling During the Early Phase of a Solar Flare
Radio Echo in the Turbulent Corona and Simulations of Solar Drift-Pair Radio Bursts
Solar Flare Arcade Modelling: Bridging the gap from 1D to 3D Simulations of Optically Thin Radiation
Dynamics of Late-Stage Reconnection in the 2017 September 10 Solar Flare
Polarisation and source structure of solar stationary type IV radio bursts
Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles
Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares
Case study of multi-temperature coronal jets for emerging flux MHD models
The STIX Aspect System (SAS): The Optical Aspect System of the Spectrometer/Telescope for Imaging X-Rays (STIX) on Solar Orbiter
What determine Solar Flares Producing Interplanetary Type III Radio Bursts?
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University