E-Print Archive

There are 4257 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles View all abstracts by submitter

Kosuke Kihara   Submitted: 2020-07-17 01:18

'To improve the forecasting capability of impactful solar energetic particle (SEP) events, the relation between coronal mass ejections (CMEs) and SEP events needs to be better understood. Here we present a statistical study of SEP occurrences and timescales with respect to the CME source locations and speeds, considering all 257 fast (vCME ≥ 900 km s-1) and wide (angular width ≥ 60) CMEs that occurred between December 2006 and October 2017. We associate them with SEP events at energies above 10 MeV. Examination of the source region of each CME reveals that CMEs more often accompany a SEP event if they originate from the longitude of E20-W100 relative to the observer. However, a SEP event could still be absent if the CME is < 2000 km s-1. For the associated CME-SEP pairs, we compute three timescales for each of the SEP events, following Kahler (2005, 2013); namely the timescale of the onset (TO), the rise time (TR), and the duration (TD). They are correlated with the longitude of the CME source region relative to the footpoint of the Parker spiral (ΔΦ) and vCME. The TO tends to be short for |ΔΦ| < 60 . This trend is weaker for TR and TD. The SEP timescales are only weakly correlated with vCME. Positive correlations of both TR and TD with vCME are seen in poorly connected (large |ΔΦ|) events. Additionally, TO appears to be negatively correlated with vCME for events with small |ΔΦ|.'

Authors: Kosuke Kihara, Yuwei Huang, Nobuhiko Nishimura, Nariaki V. Nitta, Seiji Yashiro, Kiyoshi Ichimoto, Ayumi Asai
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2020-07-18 21:49
Go to main E-Print page  Polarisation and source structure of solar stationary type IV radio bursts  Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The origin of quasi-periodicities during circular ribbon flares
Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection
An Eruptive Circular-ribbon Flare with Extended Remote Brightenings
Additivity of relative magnetic helicity in finite volumes
3D propagation of relativistic solar protons through interplanetary space
Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer
Comparison of Enhanced Absorption in He I 10830 in Observations and Modeling During the Early Phase of a Solar Flare
Radio Echo in the Turbulent Corona and Simulations of Solar Drift-Pair Radio Bursts
Solar Flare Arcade Modelling: Bridging the gap from 1D to 3D Simulations of Optically Thin Radiation
Dynamics of Late-Stage Reconnection in the 2017 September 10 Solar Flare
Polarisation and source structure of solar stationary type IV radio bursts
Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles
Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares
Case study of multi-temperature coronal jets for emerging flux MHD models
The STIX Aspect System (SAS): The Optical Aspect System of the Spectrometer/Telescope for Imaging X-Rays (STIX) on Solar Orbiter
What determine Solar Flares Producing Interplanetary Type III Radio Bursts?
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University