E-Print Archive

There are 4525 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Comparison of Enhanced Absorption in He I 10830 in Observations and Modeling During the Early Phase of a Solar Flare View all abstracts by submitter

Nengyi Huang   Submitted: 2020-07-30 11:47

The He I 10830 triplet is a very informative indicator of chromospheric activities as the helium is the second most abundant element in the solar atmosphere. Taking advantage of the high resolution of the 1.6 m Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO), previous observations have shown clear evidence of the enhanced absorption, instead of typically-observed emission, for two M-class flares. In this study, we analyze the evolution of the He I 10830 emission in numerical models and compare it with observations. The models represent the RADYN simulation results obtained from the F-CHROMA database. We consider the models with the injected electron spectra parameters close to observational estimates for the 2013-August-17 flare event (δ =8, Ec=15,20 keV, F = 1e11, 3e11 erg cm-2) in detail, as well as other available models. The modeling results agree well with observations, in the sense of both the maximum intensity decrease (-17.1%, compared to the observed value of -13.7%) and the trend of temporal variation (initial absorption phase followed by the emission). All models demonstrate the increased number densities and decreased ratio of the upper and lower level populations of He I 10830 transition in the initial phase, which enhances the opacity and forms an absorption feature. Models suggest that the temperatures and free-electron densities at heights of 1.3-1.5 Mm should be larger than ~10,000 K and 6e11 cm-3 thresholds for the line to start being in emission.

Authors: Nengyi Huang, Viacheslav M. Sadykov, Yan Xu, Ju Jing, Haimin Wang
Projects: None

Publication Status: ApJ Letter (published)
Last Modified: 2020-08-03 19:21
Go to main E-Print page  Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer  Radio Echo in the Turbulent Corona and Simulations of Solar Drift-Pair Radio Bursts  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University