E-Print Archive

There are 4282 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Additivity of relative magnetic helicity in finite volumes View all abstracts by submitter

Gherardo Valori   Submitted: 2020-08-04 02:51

Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint to the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, i.e., that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. Progress in understanding the non-additivity of relative magnetic helicity requires removal of restrictive assumptions in favour of a general formalism that can be used both in theoretical investigations as well as in numerical applications. We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite-volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. he non-additivity of relative magnetic helicity in finite volumes is proven in the most general, gauge-invariant formalism, and verified numerically. More restrictive assumptions are adopted to derive known specific approximations, yielding a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the non-additivity term in the partition equation is, in general, non-negligible. The non-additivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint to the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of non-additivity on global helicity budgets of complex physical processes.

Authors: Gherardo Valori, Pascal Démoulin, Etienne Pariat, Anthony Yeates, Kostas Moraitis and Luis Linan
Projects: None

Publication Status: Accepted for publication in Astronomy & Astrophysics
Last Modified: 2020-08-05 14:12
Go to main E-Print page  An Eruptive Circular-ribbon Flare with Extended Remote Brightenings  3D propagation of relativistic solar protons through interplanetary space  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles
The Solar Orbiter mission - Science Overview
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks
Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra
Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
Sequential Lid Removal in a Triple-Decker Chain of CME-Producing Solar Eruptions
RESIK and RHESSI observations of the 20 September 2002 flare
Starspot mapping with adaptive parallel tempering I: Implementation of computational code
Heating and Eruption of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University