E-Print Archive

There are 4293 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Additivity of relative magnetic helicity in finite volumes View all abstracts by submitter

Gherardo Valori   Submitted: 2020-08-04 02:51

Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint to the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, i.e., that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. Progress in understanding the non-additivity of relative magnetic helicity requires removal of restrictive assumptions in favour of a general formalism that can be used both in theoretical investigations as well as in numerical applications. We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite-volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. he non-additivity of relative magnetic helicity in finite volumes is proven in the most general, gauge-invariant formalism, and verified numerically. More restrictive assumptions are adopted to derive known specific approximations, yielding a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the non-additivity term in the partition equation is, in general, non-negligible. The non-additivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint to the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of non-additivity on global helicity budgets of complex physical processes.

Authors: Gherardo Valori, Pascal Démoulin, Etienne Pariat, Anthony Yeates, Kostas Moraitis and Luis Linan
Projects: None

Publication Status: Accepted for publication in Astronomy & Astrophysics
Last Modified: 2020-08-05 14:12
Go to main E-Print page  An Eruptive Circular-ribbon Flare with Extended Remote Brightenings  3D propagation of relativistic solar protons through interplanetary space  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Neutralized Electric Current of Active Regions Explained as a Projection Effect
The effect of magnetic field on the damping of slow waves in the solar corona
Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS)
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University