E-Print Archive

There are 4282 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Energy Transfer by Nonlinear Alfvén Waves in the Solar Chromosphere, and Its Effect on Spicule Dynamics, Coronal Heating, and Solar Wind Acceleration View all abstracts by submitter

Takahito Sakaue   Submitted: 2020-08-07 00:50

Alfvén waves are responsible for the transfer of magnetic energy in the magnetized plasma. They are involved in heating solar atmosphere and driving solar wind through various nonlinear processes. Since the magnetic field configurations directly affect the nonlinearity of Alfvén waves, it is important to investigate how they relate to the solar atmosphere and wind structure through the nonlinear propagation of Alfvén waves. In this study, we carried out the one-dimensional magnetohydrodynamic simulations to realize the above relation. The results show that when the nonlinearity of Alfvén waves in the chromosphere exceeds a critical value, the dynamics of the solar chromosphere (e.g., spicule) and the mass loss rate of solar wind tend to be independent of the energy input from the photosphere. In a situation where the Alfvén waves are highly nonlinear, the strong shear torsional flow generated in the chromosphere ``fractures'' the magnetic flux tube. This corresponds to the formation of chromospheric intermediate shocks, which limit the transmission of the Poynting flux into the corona by Alfvén waves and also inhibits the propagation of chromospheric slow shock.

Authors: Takahito Sakaue and Kazunari Shibata
Projects: None

Publication Status: accepted for the publication in The Astrophysical Journal
Last Modified: 2020-08-12 11:26
Go to main E-Print page  Investigation of coronal properties of X-ray bright G-dwarf stars based on the solar surface magnetic field -- corona relation  Simultaneous transverse oscillations of a coronal loop and a filament excited by a circular-ribbon flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles
The Solar Orbiter mission - Science Overview
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks
Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra
Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
Sequential Lid Removal in a Triple-Decker Chain of CME-Producing Solar Eruptions
RESIK and RHESSI observations of the 20 September 2002 flare
Starspot mapping with adaptive parallel tempering I: Implementation of computational code
Heating and Eruption of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University