E-Print Archive

There are 4293 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Network Jets as the Driver of Counter-streaming Flows in a Solar Filament/Filament Channel View all abstracts by submitter

Navdeep Kaur Panesar   Submitted: 2020-08-12 12:12

Counter-streaming flows in a small (100″ long) solar filament/filament channel are directly observed in high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) extreme-ultraviolet (EUV) images of a region of enhanced magnetic network. We combine images from SDO/AIA, SDO/Helioseismic and Magnetic Imager (HMI), and the Interface Region Imaging Spectrograph (IRIS) to investigate the driving mechanism of these flows. We find that: (I) counter-streaming flows are present along adjacent filament/filament channel threads for ∼2 hr, (II) both ends of the filament/filament channel are rooted at the edges of magnetic network flux lanes along which there are impinging fine-scale opposite-polarity flux patches, (III) recurrent small-scale jets (known as network jets) occur at the edges of the magnetic network flux lanes at the ends of the filament/filament channel, (IV) the recurrent network jet eruptions clearly drive the counter-streaming flows along threads of the filament/filament channel, (V) some of the network jets appear to stem from sites of flux cancelation, between network flux and merging opposite-polarity flux, and (VI) some show brightening at their bases, analogous to the base brightening in coronal jets. The average speed of the counter-streaming flows along the filament/filament channel threads is 70 km s-1. The average widths of the AIA filament/filament channel and the Hα filament are 4″ and 2"5, respectively, consistent with the earlier findings that filaments in EUV images are wider than in Hα images. Thus, our observations show that the continually repeated counter-streaming flows come from network jets, and these driving network jet eruptions are possibly prepared and triggered by magnetic flux cancelation.

Authors: Navdeep K. Panesar, Sanjiv K.Tiwari, Ronald L.Moore, Alphonse C. Sterling

Publication Status: Published in ApJ Letters
Last Modified: 2020-08-12 13:43
Go to main E-Print page  Onset of Magnetic Explosion in Solar Coronal Jets in Quiet Regions on the Central Disk  Investigation of coronal properties of X-ray bright G-dwarf stars based on the solar surface magnetic field -- corona relation  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Neutralized Electric Current of Active Regions Explained as a Projection Effect
The effect of magnetic field on the damping of slow waves in the solar corona
Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS)
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University