E-Print Archive

There are 4293 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Starspot mapping with adaptive parallel tempering I: Implementation of computational code View all abstracts by submitter

Kai Ikuta   Submitted: 2020-08-13 18:44

Starspots are thought to be regions of locally strong magnetic fields, similar to sunspots, and they can generate photometric brightness modulations. To deduce stellar and spot properties, such as spot emergence and decay rates, we implement computational code for starspot modeling. It is implemented with an adaptive parallel tempering algorithm and an importance sampling algorithm for parameter estimation and model selection in the Bayesian framework. For evaluating the performance of the code, we apply it to synthetic light curves produced with 3 spots. The light curves are specified in the spot parameters, such as the radii, intensities, latitudes, longitudes, and emergence/decay durations. The spots are circular with specified radii and intensities relative to the photosphere, and the stellar differential rotation coefficient is also included in the light curves. As a result, stellar and spot parameters are uniquely deduced. The number of spots is correctly determined: the 3-spot model is preferable because the model evidence is much greater than that of 2-spot models by orders of magnitude and more than that of 4-spot model by a more modest factor, whereas the light curves are produced to have 2 or 1 local minimum during one equatorial rotation period by adjusting the values of longitude. The spot emergence and decay rates can be estimated with error less than an order of magnitude, considering the difference of the number of spots.

Authors: Kai Ikuta, Hiroyuki Maehara, Yuta Notsu, Kosuke Namekata, Taichi Kato, Shota Notsu, Soshi Okamoto, Satoshi Honda, Daisaku Nogami, Kazunari Shibata
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2020-08-14 12:45
Go to main E-Print page  RESIK and RHESSI observations of the 20 September 2002 flare  Heating and Eruption of a Solar Circular Ribbon Flare  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Neutralized Electric Current of Active Regions Explained as a Projection Effect
The effect of magnetic field on the damping of slow waves in the solar corona
Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS)
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University