E-Print Archive

There are 4282 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra View all abstracts by submitter

Maria D Kazachenko   Submitted: 2020-08-24 09:51

How much energy do solar active regions (ARs) typically radiate during quiescent periods? This is a fundamental question for storage and release models of flares and ARs, yet it is presently poorly answered by observations. Here we use the "Sun-as-a-point-source" spectra from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO) to provide a novel estimate of radiative energy losses of an evolving active region. Although EVE provides excellent spectral (5-105nm) and temperature (2-25MK) coverage for AR analysis, to our knowledge, these data have not been used for this purpose due to the lack of spatial resolution and the likelihood of source confusion. Here we present a way around this problem. We analyze EVE data time series, when only one large AR 11520 was present on the disk. By subtracting the quiet Sun background, we estimate the radiative contribution in EUV from the AR alone. We estimate the mean AR irradiance and cumulative AR radiative energy losses in the 1-300A and astronomical standard ROSAT-PSPC, 3-124A, passbands and compare these to the magnetic energy injection rate through the photosphere, and to variations of the solar cycle luminosity. We find that while AR radiative energy losses are ~100 times smaller than typical magnetic energy injection rates at the photosphere, they are an order of magnitude larger or similar to the bolometric radiated energies associated with large flares. This study is the first detailed analysis of AR thermal properties using EVE Sun-as-a-star observations, opening doors to AR studies on other stars.

Authors: Maria D. Kazachenko & Hugh Hudson
Projects: GOES X-rays,SDO-AIA,SDO-HMI,SDO-EVE

Publication Status: Accepted by Astrophysical Journal, 07-Aug-2020
Last Modified: 2020-08-25 13:31
Go to main E-Print page  Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning  Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles
The Solar Orbiter mission - Science Overview
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks
Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra
Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
Sequential Lid Removal in a Triple-Decker Chain of CME-Producing Solar Eruptions
RESIK and RHESSI observations of the 20 September 2002 flare
Starspot mapping with adaptive parallel tempering I: Implementation of computational code
Heating and Eruption of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University