E-Print Archive

There are 4293 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations View all abstracts by submitter

Eo-Jin Lee   Submitted: 2020-09-01 07:45

Time series of photospheric magnetic parameters of solar active regions (ARs) are used to answer whether scaling properties of fluctuations embedded in such time series help to distinguish between flare-quiet and flaring ARs. We examine a total of 118 flare-quiet and 118 flaring AR patches (called HARPs), which were observed from 2010 to 2016 by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Specifically, the scaling exponent of fluctuations is derived applying the Detrended Fluctuation Analysis (DFA) method to a dataset of 8-day time series of 18 photospheric magnetic parameters at 12-min cadence for all HARPs under investigation. We first find a statistically significant difference in the distribution of the scaling exponent between the flare-quiet and flaring HARPs, in particular for some space-averaged, signed parameters associated with magnetic field line twist, electric current density, and current helicity. The flaring HARPs tend to show higher values of the scaling exponent compared to those of the flare-quiet ones, even though there is considerable overlap between their distributions. In addition, for both the flare-quiet and flaring HARPs the DFA analysis indicates that (1) time series of most of various magnetic parameters under consideration are non-stationary, and (2) time series of the total unsigned magnetic flux and the mean photospheric magnetic free energy density in general present a non-stationary, persistent property, while the total unsigned flux near magnetic polarity inversion lines and parameters related to current density show a non-stationary, anti-persistent trend in their time series.

Authors: Eo-Jin Lee, Sung-Hong Park, Yong-Jae Moon
Projects: SDO-HMI

Publication Status: Solar Physics (accepted)
Last Modified: 2020-09-01 16:40
Go to main E-Print page  The Solar Orbiter mission - Science Overview  Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Neutralized Electric Current of Active Regions Explained as a Projection Effect
The effect of magnetic field on the damping of slow waves in the solar corona
Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS)
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University