E-Print Archive

There are 4310 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Microwave Study of a Solar Circular Ribbon Flare View all abstracts by submitter

Jeongwoo Lee   Submitted: 2020-09-27 18:32

A circular ribbon flare SOL2014-12-17T04:51 is studied using the 17/34 GHz maps from the Nobeyama Radioheliograph (NoRH) along with (E)UV and magnetic data from the Solar Dynamics Observatory (SDO). We report the following three findings as important features of the microwave CRF. (1) The first preflare activation comes in the form of a gradual increase of the 17 GHz flux without a counterpart at 34 GHz, which indicates thermal preheating. The first sign of nonthermal activity occurs in the form of stepwise flux increases at both 17 and 34 GHz about 4 min before the impulsive phase. (2) Until the impulsive phase, the microwave emission over the entire active region is in a single polarization state matching the magnetic polarity of the surrounding fields. During and after the impulsive phase, the sign of the 17 GHz polarization state reverses in the core region, which implies a magnetic breakout-type eruption in a fan-spine magnetic structure. (3) The 17 GHz flux around the time of the eruption shows quasi-periodic variations with periods of 1-2 min. The pre-eruption oscillation is more obvious in total intensity at one end of the flare loop, and the post-eruption oscillation, more obvious in the polarized intensity at a region near the inner spine. We interpret this transition as the transfer of oscillatory power from kink mode oscillation to torsional Alfvén waves propagating along the spine field after the eruption. We argue that these three processes are inter-related and indicate a breakout process in a fan-spine structure.

Authors: Jeongwoo Lee, Stephen M. White, Xingyao Chen, Yao Chen, Hao Ning, Bo Li, Satoshi Masuda
Projects: Nobeyama Radioheliograph

Publication Status: Published in ApJ Letters
Last Modified: 2020-09-28 12:25
Go to main E-Print page  Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality  Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations
From Pseudostreamer Jets to Coronal Mass Ejections: Observations of the Breakout Continuum
Designing a New Coronal Magnetic Field Energy Diagnostic
A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection
Spectroscopic observations of a flare-related coronal jet
Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA
The non-Fourier image reconstruction method for the STIX instrument
Observation and Modeling of Solar Jets
Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations
Non-equilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection
Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction
Nonlinear Alfvén Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs
Possibility of Diagnostics of the Beginning of Solar Cycle 25 Based on Its Precursors at Mid-Heliolatitudes
The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence
Structure of the Solar Atmosphere: A Radio Perspective
Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage
ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule
Evolution of a Steamer-Blowout CME as Observed by Imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University