E-Print Archive

There are 4310 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution View all abstracts by submitter

Maria D. Kazachenko   Submitted: 2020-10-06 15:21

The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.

Authors: Todd J. Hoeksema, William P. Abbett, David J. Bercik, Mark C. M. Cheung, Marc L. DeRosa, George H. Fisher, Keiji Hayashi, Maria D. Kazachenko, Yang Liu, Erkka Lumme, Benjamin J. Lynch, Xudong Sun (孙旭东), and Brian T. Welsch

Publication Status: Published in The Astrophysical Journal Supplement Series, 250:28(15pp), 2020 October 1
Last Modified: 2020-10-07 10:17
Go to main E-Print page  Seismological constraints on the solar coronal heating function  Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations
From Pseudostreamer Jets to Coronal Mass Ejections: Observations of the Breakout Continuum
Designing a New Coronal Magnetic Field Energy Diagnostic
A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection
Spectroscopic observations of a flare-related coronal jet
Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA
The non-Fourier image reconstruction method for the STIX instrument
Observation and Modeling of Solar Jets
Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations
Non-equilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection
Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction
Nonlinear Alfvén Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs
Possibility of Diagnostics of the Beginning of Solar Cycle 25 Based on Its Precursors at Mid-Heliolatitudes
The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence
Structure of the Solar Atmosphere: A Radio Perspective
Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage
ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule
Evolution of a Steamer-Blowout CME as Observed by Imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University