E-Print Archive

There are 4293 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare View all abstracts by submitter

Hana Meszarosova   Submitted: 2020-10-15 09:45

We study the physical properties and behavior of the solar atmosphere during the GOES X1.6 solar flare on 2014 September 10. The steady plasma flows and the fast sausage MHD waves were analysed with the wavelet separation method. The magnetically coupled atmosphere and the forced magnetic field reconnection were studied with the help of the Vertical-Current Approximation Non-linear Force-Free Field code. We studied a mechanism of MHD wave transfer from the photosphere without dissipation or reflection before reaching the corona and a mechanism of the wave energy distribution over the solar corona. We report a common behavior of (extreme)ultraviolet steady plasma flows (speed of 15.3 -> 10.9 km s-1) and fast sausage MHD waves (Alfvén speed of 13.7 -> 10.3 km s-1 and characteristic periods of 1 587 -> 1 607 s), propagating in cylindrical plasma waveguides of the individual atmospheric layers (photosphere -> corona) observed by SDO/AIA/HMI and IRIS space instruments. A magnetically coupled solar atmosphere by a magnetic field flux tube above a sunspot umbra and a magnetic field reconnection forced by the waves were analysed. The solar seismology with trapped, leakage, and tunnelled modes of the waves, dissipating especially in the solar corona, is discussed with respect to its possible contribution to the outer atmosphere heating. We demonstrate that a dispersive nature of fast sausage MHD waves, which can easily generate the leaky and other modes propagating outside of their waveguide, and magnetic field flux tubes connecting the individual atmospheric layers can distribute the magnetic field energy across the active region. This mechanism can contribute to the coronal energy balance and to our knowledge on how the coronal heating is maintained.

Authors: Hana Meszarosova and Peter Gömöry
Projects: SDO-AIA,SDO-HMI

Publication Status: accepted for the Astronomy and Astrophysics
Last Modified: 2020-10-21 11:17
Go to main E-Print page  Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies  Differential rotation of the solar corona: A new data-adaptive multiwavelength approach  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Neutralized Electric Current of Active Regions Explained as a Projection Effect
The effect of magnetic field on the damping of slow waves in the solar corona
Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS)
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University