E-Print Archive

There are 4618 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies View all abstracts by submitter

Eduard Kontar   Submitted: 2020-10-21 03:44

Recent developments in astronomical radio telescopes opened new opportunities in imaging and spectroscopy of solar radio bursts at sub-second timescales. Imaging in narrow frequency bands has revealed temporal variations in the positions and source sizes that do not fit into the standard picture of type III solar radio bursts, and require a better understanding of radio-wave transport. In this paper, we utilise 3D Monte Carlo ray-tracing simulations that account for the anisotropic density turbulence in the inhomogeneous solar corona to quantitatively explain the image dynamics at the fundamental (near plasma frequency) and harmonic (double) plasma emissions observed at ~ 32~MHz. Comparing the simulations with observations, we find that anisotropic scattering from an instantaneous emission point source can account for the observed time profiles, centroid locations, and source sizes of the fundamental component of type III radio bursts (generated where fpe ≈ 32~MHz). The best agreement with observations is achieved when the ratio of the perpendicular to the parallel component of the wave vector of anisotropic density turbulence is around 0.25. Harmonic emission sources observed at the same frequency (~ 32~MHz, but generated where fpe ≈ 16~MHz) have apparent sizes comparable to those produced by the fundamental emission, but demonstrate a much slower temporal evolution. The simulations of radio-wave propagation make it possible to quantitatively explain the variations of apparent source sizes and positions at sub-second time-scales both for the fundamental and harmonic emissions, and can be used as a diagnostic tool for the plasma turbulence in the upper corona.

Authors: X. Chen, E. P. Kontar, N. Chrysaphi, N. L.S. Jeffrey, M. Gordovskyy, Y. Yan, B. Tan
Projects: LOw Frequency ARray (LOFAR),SDO-AIA

Publication Status: Accepted for publication in ApJ
Last Modified: 2020-10-21 11:17
Go to main E-Print page  The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope  Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University