E-Print Archive

There are 4310 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS) View all abstracts by submitter

Amir Caspi   Submitted: 2020-11-21 01:53

The Dual-zone Aperture X-ray Solar Spectrometer (DAXSS) was flown on 2018 June18 on the NASA 36.336 sounding rocket flight and obtained the highest resolution to date for solar soft X-ray (SXR) spectra over a broad energy range. This observation was during a time with quiescent (non-flaring) small active regions on the solar disk and when the 10.7 cm radio flux (F10.7) was 75 solar flux units (1 sfu = 10-22 W/m^2/Hz). The DAXSS instrument consists of a LASP-developed dual-zone aperture and a commercial X-ray spectrometer from Amptek that measures solar full-disk irradiance from 0.5-20 keV with a resolving power of 20 near 1 keV. This paper discusses the novel design of the spectrometer and the instrument characterization techniques. Additionally,the solar measurements obtained from the 2018 sounding rocket flight are analyzed using CHIANTI spectral models to fit the temperatures, emission measures, and relative elemental abundances of the solar corona plasma. The abundance of iron was found to be 35 percent higher than expected in the quiescent sun's corona suggesting either that our spectral models require additional sophistication or that the underlying atomic database may require updates. Future long-term systematic observations of this spectral range are needed. DAXSS will fly on the INSPIRESat-1 CubeSat in late-2020, and its SXR spectral data could provide further insight into the sources of coronal heating through modeling the changes of relative elemental abundances during developments of active regions and solar flaring events.

Authors: Bennet D. Schwab, Robert H. A. Sewell, Thomas N. Woods, Amir Caspi, James Paul Mason, and Christopher Moore
Projects: GOES X-rays,MinXSS,Other

Publication Status: Published -- Schwab et al. 2020, ApJ, 904, 20; DOI: 10.3847/1538-4357/abba2a
Last Modified: 2020-11-25 12:04
Go to main E-Print page  The effect of magnetic field on the damping of slow waves in the solar corona  Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations
From Pseudostreamer Jets to Coronal Mass Ejections: Observations of the Breakout Continuum
Designing a New Coronal Magnetic Field Energy Diagnostic
A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection
Spectroscopic observations of a flare-related coronal jet
Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA
The non-Fourier image reconstruction method for the STIX instrument
Observation and Modeling of Solar Jets
Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations
Non-equilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection
Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction
Nonlinear Alfvén Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs
Possibility of Diagnostics of the Beginning of Solar Cycle 25 Based on Its Precursors at Mid-Heliolatitudes
The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence
Structure of the Solar Atmosphere: A Radio Perspective
Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage
ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule
Evolution of a Steamer-Blowout CME as Observed by Imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University