E-Print Archive

There are 4310 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

The Kinematic Evolution of Erupting Structures in Confined Solar Flares View all abstracts by submitter

Xin Cheng   Submitted: 2020-11-29 21:08

In this Letter, we study the kinematic properties of ascending hot blobs associated with confined flares. Taking advantage of high-cadence extreme-ultraviolet images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find that for the 26 events selected here, the hot blobs are first impulsively accelerated outward, but then quickly slow down to motionlessness. Their velocity evolution is basically synchronous with the temporal variation of the Geostationary Operational Environmental Satellite soft X-ray flux of the associated flares, except that the velocity peak precedes the soft X-ray peak by minutes. Moreover, the duration of the acceleration phase of the erupting blobs is moderately correlated with that of the flare rise phase. For nine of the 26 cases, the erupting blobs even appear minutes prior to the onset of the associated flares. Our results show that a fraction of confined flares also involve the eruption of a magnetic flux rope, which sometimes is formed and heated prior to the flare onset. We suggest that the initiation and development of these confined flares are similar to that of eruptive ones, and the main difference may lie in the background field constraint, which is stronger for the former than for the latter.

Authors: Huang, Z. W.; Cheng, X.; Ding, M. D.
Projects: None

Publication Status: The Astrophysical Journal Letters, Volume 904, Issue 1, id.L2, 7 pp.
Last Modified: 2020-11-30 16:54
Go to main E-Print page  Evolution of the Toroidal Flux of CME Flux Ropes during Eruption  Deriving CME density from remote sensing data and comparison to in-situ measurements  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations
From Pseudostreamer Jets to Coronal Mass Ejections: Observations of the Breakout Continuum
Designing a New Coronal Magnetic Field Energy Diagnostic
A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection
Spectroscopic observations of a flare-related coronal jet
Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA
The non-Fourier image reconstruction method for the STIX instrument
Observation and Modeling of Solar Jets
Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations
Non-equilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection
Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction
Nonlinear Alfvén Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs
Possibility of Diagnostics of the Beginning of Solar Cycle 25 Based on Its Precursors at Mid-Heliolatitudes
The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence
Structure of the Solar Atmosphere: A Radio Perspective
Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage
ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule
Evolution of a Steamer-Blowout CME as Observed by Imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University