E-Print Archive

There are 4310 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Differential rotation of the chromosphere in the He I absorption line View all abstracts by submitter

kejun Li   Submitted: 2020-11-30 19:51

Differential rotation is the basis of the solar dynamo theory. Synoptic maps of He I intensity from Carrington rotations 2032 to 2135 are utilized to investigate the differential rotation of the solar chromosphere in the He I absorption line. The chromosphere is surprisingly found to rotate faster than the photosphere below it. The anomalous heating of the chromosphere and corona has been a big problem in modern astronomy.It is speculated that the small-scale magnetic elements with magnetic flux in the range of (2.9 - 32.0)x 1018 Mx which are anchored in the leptocline,heat the quiet chromosphere to present the anomalous temperature increase, causing it to rotate at the same rate as the leptocline. The differential of rotation rate in the chromosphere is found to be strengthened by strong magnetic fields, but in stark contrast, at the photosphere strong magnetic fields repress the differential of rotation rate. A plausible explanation is given for these findings.

Authors: KJ Li, JC Xu, JL Xie, and W Feng
Projects: None

Publication Status: Accepted for publication in APJ Letters
Last Modified: 2020-12-01 11:31
Go to main E-Print page  Initiation and Early Kinematic Evolution of Solar Eruptions  Evolution of the Toroidal Flux of CME Flux Ropes during Eruption  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations
From Pseudostreamer Jets to Coronal Mass Ejections: Observations of the Breakout Continuum
Designing a New Coronal Magnetic Field Energy Diagnostic
A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection
Spectroscopic observations of a flare-related coronal jet
Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA
The non-Fourier image reconstruction method for the STIX instrument
Observation and Modeling of Solar Jets
Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations
Non-equilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection
Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction
Nonlinear Alfvén Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs
Possibility of Diagnostics of the Beginning of Solar Cycle 25 Based on Its Precursors at Mid-Heliolatitudes
The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence
Structure of the Solar Atmosphere: A Radio Perspective
Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage
ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule
Evolution of a Steamer-Blowout CME as Observed by Imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University