E-Print Archive

There are 4310 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Three-dimensional simulations of the inhomogeneous Low Solar Wind View all abstracts by submitter

Norbert Magyar   Submitted: 2020-12-03 01:40

In the near future, Parker Solar Probe will put theories about the dynamics and nature of the transition between the solar corona and the solar wind to stringent tests. The most popular mechanism aimed to explain the dynamics of the nascent solar wind, including its heating and acceleration is magnetohydrodynamic (MHD) turbulence. Most of the previous models focus on nonlinear cascade induced by interactions of outgoing Alfvén waves and their reflections, ignoring effects that might be related to perpendicular structuring of the solar coronal plasma, despite overwhelming evidence for it. In this paper, for the first time, we analyse through 3D MHD numerical simulations the dynamics of the perpendicularly structured solar corona and solar wind, from the low corona to 15 R_Sun. We find that background structuring has a strong effect on the evolution of MHD turbulence, on much faster time scales than in the perpendicularly homogeneous case. On time scales shorter than nonlinear times, linear effects related to phase mixing result in a 1/f perpendicular energy spectrum. As the turbulent cascade develops, we observe a perpendicular (parallel) energy spectrum with the power law index of -3/2 or -5/3 (-2), a steeper perpendicular magnetic field than velocity spectrum, and a strong build-up of negative residual energy. We conclude that the turbulence is most probably generated by the self-cascade of the driven transverse kink waves, referred to previously as `uniturbulence', which might represent the dominant nonlinear energy cascade channel in the pristine solar wind.

Authors: N. Magyar, V. M. Nakariakov
Projects: None

Publication Status: Accepted
Last Modified: 2020-12-09 13:10
Go to main E-Print page  Analyzing the propagation of EUV waves and their connection with type II radio bursts by combining numerical simulations and multi-instrument observations  Initiation and Early Kinematic Evolution of Solar Eruptions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations
From Pseudostreamer Jets to Coronal Mass Ejections: Observations of the Breakout Continuum
Designing a New Coronal Magnetic Field Energy Diagnostic
A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection
Spectroscopic observations of a flare-related coronal jet
Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA
The non-Fourier image reconstruction method for the STIX instrument
Observation and Modeling of Solar Jets
Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations
Non-equilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection
Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction
Nonlinear Alfvén Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs
Possibility of Diagnostics of the Beginning of Solar Cycle 25 Based on Its Precursors at Mid-Heliolatitudes
The chromospheric component of coronal bright points. Coronal and chromospheric responses to magnetic-flux emergence
Structure of the Solar Atmosphere: A Radio Perspective
Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage
ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule
Evolution of a Steamer-Blowout CME as Observed by Imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University