E-Print Archive

There are 4347 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction View all abstracts by submitter

Amir Caspi   Submitted: 2020-12-29 23:58

We describe a new algorithm for reconstruction of Differential Emission Measures (DEMs) in the solar corona. Although a number of such algorithms currently exist, they can have difficulty converging for some cases, and can be complex, slow, or idiosyncratic in their output (i.e., their inversions can have features that are a result of the inversion code and instrument response, not of the solar source); we will document some of these issues in this paper. The new algorithm described here significantly reduces these drawbacks and is particularly notable for its simplicity; it is reproduced here, in full, on a single page. After we describe the algorithm, we compare its performance and fidelity with some prevalent methods. Although presented here for extreme ultraviolet (EUV) data, the algorithm is robust and extensible to any other wavelengths (e.g., X-rays) where the DEM treatment is valid.

Authors: Joseph Plowman, Amir Caspi
Projects: SDO-AIA

Publication Status: Published -- Plowman & Caspi 2020, ApJ, 905, 17; DOI: 10.3847/1538-4357/abc260
Last Modified: 2020-12-30 16:14
Go to main E-Print page  Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona  Nonlinear Alfv'en Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830Å Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning
The source of the major solar energetic particle events from super active region 11944
Critical decay index for eruptions of ‘short’ filaments
Thermal Trigger for Solar Flares I: Fragmentation of the Preflare Current Layer
The Evolution of Plasma Composition During a Solar Flare
Large-amplitude prominence oscillations following the impact by a coronal jet
Mass of prominences experiencing failed eruptions
Relative field line helicity of a large eruptive solar active region
The effect of a dynamo-generated field on the Parker wind

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University