E-Print Archive

There are 4330 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

The non-Fourier image reconstruction method for the STIX instrument View all abstracts by submitter

Tomasz Mrozek   Submitted: 2021-01-17 03:07

In this work we aimed to develop the image reconstruction algorithm without any analytical simplifications and restrictions. In our method we abandon Fourier's approach to image reconstruction, and instead use the number of counts recorded in each detector pixel, and then reconstruct each image using a classical Richardson-Lucy algorithm. Among similar works performed in the past, our approach is based, for the first time, on the real geometry of STIX. We made a preliminary analysis of expected differences in STIX imaging which may occur due to usage of slightly different geometries. The other difference is that we use single-pixel-response maps. Namely, knowing the instrument geometry we are able to calculate the detector response for point sources covering entire the solar disc. Next, we iteratively combine them with varying weights until the best match between reconstructed and observed detector responses is achieved. Preliminary tests revealed that the developed algorithm reproduces high quality images. The algorithm is moderately fast, but the result comparable to CLEAN algorithm is obtained within 20-50 iteration steps which takes less than 2 seconds on typical portable computer configuration. The location, size and intensity of reconstructed sources are very close to simulated ones. Therefore the algorithm is very well suited for the detailed photometry of the solar HXR sources. Moreover, its simplicity allows to improve photon transmission calculation in case of any grids uncertainties measured after the launch.

Authors: Siarkowski, Marek; Mrozek, Tomasz; Sylwester, Janusz; Litwicka, Michalina; Dąbek, Magdalena
Projects: SO/STIX

Publication Status: Open Astronomy: accepted
Last Modified: 2021-01-17 12:58
Go to main E-Print page  Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA  Observation and Modeling of Solar Jets  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The effect of a dynamo-generated field on the Parker wind
Magnetic Helicity Flux across Solar Active Region Photospheres: II. Association of Hemispheric Sign Preference with Flaring Activity during Solar Cycle 24
NuSTAR Observation of Energy Release in 11 Solar Microflares
The Lyα Emission in Solar Flares. I. A Statistical Study on Its Relationship with the 1-8 Soft X-Ray Emission
Radiative hydrodynamic simulations of the spectral characteristics of solar white-light flares
Slow-Mode Magnetoacoustic Waves in Coronal Loops (Review)
Diagnosing a Solar Flaring Core with Bidirectional Quasi-periodic Fast Propagating Magnetoacoustic Waves
Are the brightest coronal loops always rooted in mixed-polarity magnetic flux?
Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections
Properties of stream interaction regions at Earth and Mars during the declining phase of SC 24
Spatial and temporal analysis of 3-minute oscillations in the chromosphere associated with the X2.2 Solar Flare on 2011 February 15
Pitch-angle distribution of accelerated electrons in 3D current sheets with magnetic islands
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves
Quasi-Periodic Particle Acceleration in a Solar Flare
Relationship between three-dimensional velocity of filament eruptions and CME association
Multi-thermal atmosphere of a mini-solar flare during magnetic reconnection observed with IRIS
Solar Irradiance Variability Due To Solar Flares Observed in Lyman α Emission
Evolutionary stages and triggering process of a complex eruptive flare with circular and parallel ribbons
Sequential Lid Removal in a Triple-decker Chain of CME-producing Solar Eruptions
The Neupert Effect of Flare UltraViolet and Soft X-ray Emissions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University