E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Evolutionary stages and triggering process of a complex eruptive flare with circular and parallel ribbons View all abstracts by submitter

Navin Chandra Joshi   Submitted: 2021-01-30 23:56

We report multiwavelength study of a complex M-class solar eruptive flare that consists of three different sets of flare ribbons, viz. circular, parallel, and remote ribbons. Magnetic field modelling of source active region NOAA 12242 exhibits the presence of 3D null-point magnetic topology that encompasses an inner bipolar region. The event initiates with the faint signatures of the circular ribbon along with remote brightening right from the pre-flare phase that points toward the ongoing slow yet persistent null-point reconnection. We first detected flux cancellation and an associated brightening, which are likely signatures of tethercutting reconnection that builds the flux rope near the polarity inversion line (PIL) of the inner bipolar region. In the next stage, with the onset of M8.7 flare, there is a substantial enhancement in the brightening of circular ribbon, which essentially suggests an increase in the rate of ongoing null-point reconnection. Finally, the eruption of underlying flux rope triggers ‘standard flare reconnection’ beneath it producing an abrupt rise in the intensity of the parallel ribbons as well as enhancing the rate of null-point reconnection by external forcing. We show that within the the fan dome, the region with magnetic decay index n > 1.5 borders the null-point QSL. Our analysis suggests that both the torus instability and the breakout model have played role toward the triggering mechanism for the eruptive flare. This event is a nice example of the dynamical evolution of a flux rope initially confined in a null-point topology that subsequently activates and erupts with the progression of the circular-cum-parallel ribbon flare.

Authors: Navin Chandra Joshi, Bhuwan Joshi, Prabir K. Mitra

Publication Status: Published in MNRAS journal
Last Modified: 2021-02-01 15:55
Go to main E-Print page  Solar Irradiance Variability Due To Solar Flares Observed in Lyman-alpha Emission  Sequential Lid Removal in a Triple-decker Chain of CME-producing Solar Eruptions  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University