E-Print Archive

There are 4330 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Are the brightest coronal loops always rooted in mixed-polarity magnetic flux? View all abstracts by submitter

Sanjiv Tiwari   Submitted: 2021-02-19 13:34

A recent study demonstrated that freedom of convection and strength of magnetic field in the photospheric feet of active-region (AR) coronal loops, together, can engender or quench heating in them. Other studies stress that magnetic flux cancellation at the loop-feet potentially drives heating in loops. We follow 24-hour movies of a bipolar AR, using EUV images from SDO/AIA and line-of-sight (LOS) magnetograms from SDO/HMI, to examine magnetic polarities at the feet of 23 of the brightest coronal loops. We derived FeXVIII emission (hot-94) images (using the Warren et al. method) to select the hottest/brightest loops, and confirm their footpoint locations via non-force-free field extrapolations. From 6"6" boxes centered at each loop foot in LOS magnetograms we find that ∼40% of the loops have both feet in unipolar flux, and ∼60% of the loops have at least one foot in mixed-polarity flux. The loops with both feet unipolar are ∼15% shorter lived on average than the loops having mixed-polarity foot-point flux, but their peak-intensity averages are equal. The presence of mixed-polarity magnetic flux in at least one foot of majority of the loops suggests that flux cancellation at the footpoints may drive most of the heating. But, the absence of mixed-polarity magnetic flux (to the detection limit of HMI) in ∼40% of the loops suggests that flux cancellation may not be necessary to drive heating in coronal loops - magnetoconvection and field strength at both loop feet possibly drive much of the heating, even in the cases where a loop foot presents mixed-polarity magnetic flux.

Authors: Sanjiv K. Tiwari, Caroline L. Evans, Navdeep K. Panesar, Avijeet Prasad, Ronald L. Moore
Projects: SDO-AIA,SDO-HMI

Publication Status: ApJ, 2021, 908, 151
Last Modified: 2021-02-20 22:47
Go to main E-Print page  Diagnosing a Solar Flaring Core with Bidirectional Quasi-periodic Fast Propagating Magnetoacoustic Waves  Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The effect of a dynamo-generated field on the Parker wind
Magnetic Helicity Flux across Solar Active Region Photospheres: II. Association of Hemispheric Sign Preference with Flaring Activity during Solar Cycle 24
NuSTAR Observation of Energy Release in 11 Solar Microflares
The Lyα Emission in Solar Flares. I. A Statistical Study on Its Relationship with the 1-8 Soft X-Ray Emission
Radiative hydrodynamic simulations of the spectral characteristics of solar white-light flares
Slow-Mode Magnetoacoustic Waves in Coronal Loops (Review)
Diagnosing a Solar Flaring Core with Bidirectional Quasi-periodic Fast Propagating Magnetoacoustic Waves
Are the brightest coronal loops always rooted in mixed-polarity magnetic flux?
Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections
Properties of stream interaction regions at Earth and Mars during the declining phase of SC 24
Spatial and temporal analysis of 3-minute oscillations in the chromosphere associated with the X2.2 Solar Flare on 2011 February 15
Pitch-angle distribution of accelerated electrons in 3D current sheets with magnetic islands
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves
Quasi-Periodic Particle Acceleration in a Solar Flare
Relationship between three-dimensional velocity of filament eruptions and CME association
Multi-thermal atmosphere of a mini-solar flare during magnetic reconnection observed with IRIS
Solar Irradiance Variability Due To Solar Flares Observed in Lyman α Emission
Evolutionary stages and triggering process of a complex eruptive flare with circular and parallel ribbons
Sequential Lid Removal in a Triple-decker Chain of CME-producing Solar Eruptions
The Neupert Effect of Flare UltraViolet and Soft X-ray Emissions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University