E-Print Archive

There are 4350 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Alfvén wave heating in partially ionized thin threads of solar prominences View all abstracts by submitter

Llorenç Melis   Submitted: 2021-04-01 02:41

There is observational evidence of the presence of small-amplitude transverse magnetohydrodynamic (MHD) waves with a wide range of frequencies in the threads of solar prominences. It is believed that the waves are driven at the photosphere and propagate along the magnetic field lines up to prominences suspended in the corona. The dissipation of MHD wave energy in the partially ionized prominence plasma is a heating mechanism whose relevance needs to be explored. Here we consider a simple 1D model for a non-uniform thin thread and investigate the heating associated with dissipation of Alfvén waves. The model assumes an ad hoc density profile and a uniform pressure, while the temperature and ionization degree are self-consistently computed considering either LTE or non-LTE approximations for the hydrogen ionization. A broadband driver for Alfvén waves is placed at one end of the magnetic field line, representing photospheric excitation. The Alfvénic perturbations along the thread are obtained by solving the linearized MHD equations for a partially ionized plasma in the single-fluid approximation.We find that wave heating in the partially ionized part of the thread is significant enough to compensate for energy losses due to radiative cooling. A greater amount of heating is found in the LTE case because the ionization degree for core prominence temperatures is lower than that in the non-LTE approximation. This results in a greater level of dissipation due to ambipolar diffusion in the LTE case. Conversely, in the hot coronal part of the model, the plasma is fully ionized and wave heating is negligible. The results of this simple model suggest that MHD wave heating can be relevant for the energy balance in prominences. Further studies based on more elaborate models are required.

Authors: Llorenç Melis, Roberto Soler, and José Luis Ballester
Projects: None

Publication Status: A&A (accepted)
Last Modified: 2021-04-01 13:50
Go to main E-Print page  Energy partition in a confined flare with an extreme-ultraviolet late phase  He I 10830Å Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830Å Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning
The source of the major solar energetic particle events from super active region 11944
Critical decay index for eruptions of ‘short’ filaments
Thermal Trigger for Solar Flares I: Fragmentation of the Preflare Current Layer
The Evolution of Plasma Composition During a Solar Flare
Large-amplitude prominence oscillations following the impact by a coronal jet

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University