E-Print Archive

There are 4423 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope View all abstracts by submitter

Chaowei Jiang   Submitted: 2021-05-21 04:07

Magnetic flux rope (MFR) has been recognized as the key magnetic configuration of solar eruptions. While pre-eruption MFRs within the core of solar active regions (ARs) have been widely studied, those existing between two ARs, i.e., the intermediate ones in weak-field regions, were rarely studied. There are also major eruptions that occurred in such intermediate regions and study of the MFR there will help us understand the physics mechanism underlying the eruptions. Here, with a nonlinear force-free field reconstruction of solar coronal magnetic fields, we tracked the five-day evolution covering the full life of a large-scale inter-AR MFR forming between ARs NOAA 11943 and 11944, which is closely cospatial with a long sigmoidal filament channel and an eruptive X1.2 flare occurring on 2014 January 7. Through topological analysis of the reconstructed 3D magnetic field, it is found that the MFR begins to form early on 2014 January 6; then with its magnetic twist degree continuously increasing for over 30 hr, it becomes highly twisted with field lines winding numbers approaching six turns, which might be the highest twisting degree in extrapolated MFRs that have been reported in the literature. The formation and strength of the MFR are attributed to a continuous sunspot rotation of AR 11944 and flux cancellation between the two ARs. The MFR and its associated filaments exhibit no significant change across the flare time, indicating it is not responsible for the flare eruption. After the flare, the MFR slowly disappears, possibly due to the disturbance by the eruption.

Authors: Aiying Duan, Chaowei Jiang, Peng Zou, Xueshang Feng, and Jun Cui
Projects: None

Publication Status: Published in ApJ
Last Modified: 2021-05-23 10:52
Go to main E-Print page  FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics  Variation of Magnetic Flux Ropes through Major Solar Flares  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands
Simultaneous ALMA-Hinode-IRIS observations on footpoint signatures of a soft X-ray loop-like microflare
Multiple electron acceleration instances during a series of solar
CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption
Sympathetic Filament Eruptions within a Fan-spine Magnetic System
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University