E-Print Archive

There are 4414 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Bayesian evidence for a nonlinear damping model for coronal loop oscillations View all abstracts by submitter

Inigo Arregui   Submitted: 2021-06-24 03:08

Recent observational and theoretical studies indicate that the damping of solar coronal loop oscillations depends on the oscillation amplitude. We consider two mechanisms, linear resonant absorption and a nonlinear damping model. We confront theoretical predictions from these models with observed data in the plane of observables defined by the damping ratio and the oscillation amplitude. The structure of the Bayesian evidence in this plane displays a clear separation between the regions where each model is more plausible relative to the other. There is qualitative agreement between the regions of high marginal likelihood and Bayes factor for the nonlinear damping model and the arrangement of observed data. A quantitative application to 101 loop oscillation cases observed with SDO/AIA results in the marginal likelihood for the nonlinear model being larger in the majority of them. The cases with conclusive evidence for the nonlinear damping model outnumber considerably those in favor of linear resonant absorption.

Authors: I. Arregui
Projects: None

Publication Status: ApJL (accepted)
Last Modified: 2021-06-25 02:48
Go to main E-Print page  M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfv'en Wave  Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops
First Frequency-Time-Resolved Imaging Spectroscopy Observations of Solar Radio Spikes
Magnetic Flux and Magnetic Non-potentiality of Active Regions in Eruptive and Confined Solar Flares
Observations of shock propagation through turbulent plasma in the solar corona
The Formation and Lifetime of Outflows in a Solar Active Region
Localised acceleration of energetic particles by a weak shock in the solar corona
Stereoscopic Measurements of Coronal Doppler Velocities
Multi-wavelength Observations of a Metric Type-II Event
A physics-based method that can predict imminent large solar flares
The Solar Memory From Hours to Decades

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University