E-Print Archive

There are 4414 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Characteristic time of stellar flares on Sun-like stars View all abstracts by submitter

Yan Yan   Submitted: 2021-07-02 18:37

Using the short-cadence data (1-min interval) of the Kepler space telescope, we conducted a statistical analysis for the characteristic time of stellar flares on Sun-like stars (SLS). Akin to solar flares, stellar flares show rise and decay light-curve profiles, which reflect the two distinct phases (rise phase and decay phase) of the flare process. We derived characteristic times of the two phases for stellar flares of SLS, resulting in a median rise time of about 5.9 min and a median decay time of 22.6 min. It is found that both the rise time and the decay time of the stellar flares follow a lognormal distribution. The peak positions of the lognormal distributions for flare rise time and decay time are 3.5 min and 14.8 min, respectively. These time values for stellar flares are similar to the time-scale of solar flares, which supports the idea that stellar flares and solar flares have the same physical mechanism. The statistical results obtained in this work for SLS can be a benchmark of flare characteristic times when comparing with other types of stars.

Authors: Y Yan, H He, C Li, A Esamdin, B L Tan, L Y Zhang, H Wang
Projects: None

Publication Status: Y Yan, H He, C Li, A Esamdin, B L Tan, L Y Zhang, H Wang
Last Modified: 2021-07-02 18:38
Go to main E-Print page  Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops  M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfv'en Wave  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops
First Frequency-Time-Resolved Imaging Spectroscopy Observations of Solar Radio Spikes
Magnetic Flux and Magnetic Non-potentiality of Active Regions in Eruptive and Confined Solar Flares
Observations of shock propagation through turbulent plasma in the solar corona
The Formation and Lifetime of Outflows in a Solar Active Region
Localised acceleration of energetic particles by a weak shock in the solar corona
Stereoscopic Measurements of Coronal Doppler Velocities
Multi-wavelength Observations of a Metric Type-II Event
A physics-based method that can predict imminent large solar flares
The Solar Memory From Hours to Decades

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University