E-Print Archive

There are 4488 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Formation and Lifetime of Outflows in a Solar Active Region View all abstracts by submitter

David Brooks   Submitted: 2021-08-13 00:19

Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely observed at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mechanisms that form and drive these upflows, however, remain to be fully characterized. It is unclear how quickly they form, or how long they exist during their lifetimes. They could be initiated low in the atmosphere during magnetic flux emergence, or as a response to processes occurring high in the corona when the active region is fully developed. On 2019 March 31 a simple bipolar active region (AR 12737) emerged and upflows developed on each side. We used observations from Hinode, SDO, IRIS, and Parker Solar Probe (PSP) to investigate the formation and development of the upflows from the eastern side. We used the spectroscopic data to detect the upflow, and then used the imaging data to try to trace its signature back to earlier in the active region emergence phase. We find that the upflow forms quickly, low down in the atmosphere, and that its initiation appears associated with a small field-opening eruption and the onset of a radio noise storm detected by PSP. We also confirmed that the upflows existed for the vast majority of the time the active region was observed. These results suggest that the contribution to the solar wind occurs even when the region is small, and continues for most of its lifetime.

Authors: David H. Brooks, Louise Harra, Stuart D. Bale, Krzysztof Barczynski, Cristina Mandrini, Vanessa Polito, and Harry P. Warren
Projects: Hinode/EIS

Publication Status: Published in The Astrophysical Journal
Last Modified: 2021-08-16 13:53
Go to main E-Print page  Observations of shock propagation through turbulent plasma in the solar corona  Localised acceleration of energetic particles by a weak shock in the solar corona  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University