E-Print Archive

There are 4499 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Kink oscillations of coronal loops View all abstracts by submitter

Valery Nakariakov   Submitted: 2021-08-23 12:29

Kink oscillations of coronal loops, i.e., standing kink waves, is one of the most studied dynamic phenomena in the solar corona. The oscillations are excited by impulsive energy releases, such as low coronal eruptions. Typical periods of the oscillations are from a few to several minutes, and are found to increase linearly with the increase in the major radius of the oscillating loops. It clearly demonstrates that kink oscillations are natural modes of the loops, and can be described as standing fast magnetoacoustic waves with the wavelength determined by the length of the loop. Kink oscillations are observed in two different regimes. In the rapidly decaying regime, the apparent displacement amplitude reaches several minor radii of the loop. The damping time which is about several oscillation periods decreases with the increase in the oscillation amplitude, suggesting a nonlinear nature of the damping. In the decayless regime, the amplitudes are smaller than a minor radius, and the driver is still debated. The review summarises major findings obtained during the last decade, and covers both observational and theoretical results. Observational results include creation and analysis of comprehensive catalogues of the oscillation events, and detection of kink oscillations with imaging and spectral instruments in the EUV and microwave bands. Theoretical results include various approaches to modelling in terms of the magnetohydrodynamic wave theory. Properties of kink oscillations are found to depend on parameters of the oscillating loop, such as the magnetic twist, stratification, steady flows, temperature variations and so on, which make kink oscillations a natural probe of these parameters by the method of magnetohydrodynamic seismology.

Authors: V. M. Nakariakov, S. A. Anfiinogentov, P. Antolin, R. Jain, D. Y. Kolotkov, E. G. Kupriyanova, D. Li, N. Magyar, G. Nistico, D. J. Pascoe, A. K. Srivastava, J. Terradas, S. Vasheghani Farahani, G. Verth, D. Yuan, I. V. Zimovets
Projects: None

Publication Status: Space Sci. Rev. (accepted)
Last Modified: 2021-08-23 13:59
Go to main E-Print page  TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets  First Frequency-Time-Resolved Imaging Spectroscopy Observations of Solar Radio Spikes  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University