E-Print Archive

There are 4423 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A revised cone model and its application to non-radial prominence eruptions View all abstracts by submitter

Q. M. Zhang   Submitted: 2021-08-26 20:55

The traditional cone models achieve great success in studying the geometrical and kinematic properties of halo coronal mass ejections (CMEs). In this paper, a revised cone model is proposed to investigate the properties of CMEs as a result of non-radial prominence eruptions. The cone apex is located at the source region of an eruption instead of the Sun center. The cone axis deviates from the local vertical by an inclination angle of \theta_1 and an angle of \phi_1. The length and angular width of the cone are r and ω, respectively. The model is successfully applied to two CMEs originating from the western limb on 2011 August 11 and 2012 December 7. By comparing the projections of the cones with the CME fronts simultaneously observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imager (EUVI) on board the ahead Solar TErrestrial RElations Observatory (STEREO), the properties of the CMEs are derived, including the distance, angular width, inclination angle, deviation from the plane of the sky, and true speed in space. This revised cone model provides a new and complementary approach in exploring the whole evolutions of CMEs.

Authors: Q. M. Zhang
Projects: None

Publication Status: accepted for publication in A&A Letters
Last Modified: 2021-08-27 15:33
Go to main E-Print page  Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics  Zonal harmonics of solar magnetic field for solar cycle forecast  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands
Simultaneous ALMA-Hinode-IRIS observations on footpoint signatures of a soft X-ray loop-like microflare
Multiple electron acceleration instances during a series of solar
CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption
Sympathetic Filament Eruptions within a Fan-spine Magnetic System
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University