E-Print Archive

There are 4423 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region View all abstracts by submitter

Tetsu Anan   Submitted: 2021-09-13 14:01

In order to investigate the relation between magnetic structures and the signatures of heating in plage regions, we observed a plage region with the He I 1083.0 nm and Si I 1082.7 nm lines on 2018 October 3 using the integral field unit mode of the GREGOR Infrared Spectrograph (GRIS) installed at the GREGOR telescope. During the GRIS observation, the Interface Region Imaging Spectrograph (IRIS) obtained spectra of the ultraviolet Mg II doublet emitted from the same region. In the periphery of the plage region, within the limited field of view seen by GRIS, we find that the Mg II radiative flux increases with the magnetic field in the chromosphere with a factor of proportionality of 2.38 x 104 erg cm-2 s-1 G-1. The positive correlation implies that magnetic flux tubes can be heated by Alfvén wave turbulence or by collisions between ions and neutral atoms relating to Alfvén waves. Within the plage region itself, the radiative flux was large between patches of strong magnetic field strength in the photosphere, or at the edges of magnetic patches. On the other hand, we do not find any significant spatial correlation between the enhanced radiative flux and the chromospheric magnetic field strength or the electric current. In addition to the Alfvén wave turbulence or collisions between ions and neutral atoms relating to Alfvén waves, other heating mechanisms related to magnetic field perturbations produced by interactions of magnetic flux tubes could be at work in the plage chromosphere.

Authors: T. Anan, T. A. Schad, R. Kitai, G. I. Dima, S. A. Jaeggli, L. A. Tarr, M. Collados, C. Dominguez-Tagle, L. Kleint
Projects: IRIS

Publication Status: Accepted for publication in The Astrophysical Journal
Last Modified: 2021-09-13 20:56
Go to main E-Print page  Solar Flare Effects on the Earth’s Lower Ionosphere  Probing Current Sheet Instabilities from Flare Ribbon Dynamics  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands
Simultaneous ALMA-Hinode-IRIS observations on footpoint signatures of a soft X-ray loop-like microflare
Multiple electron acceleration instances during a series of solar
CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption
Sympathetic Filament Eruptions within a Fan-spine Magnetic System
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University