E-Print Archive

There are 4423 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Solar Flare Effects on the Earth’s Lower Ionosphere View all abstracts by submitter

Laura Hayes   Submitted: 2021-09-15 03:40

Solar flares significantly impact the conditions of the Earth's ionosphere. In particular, the sudden increase in X-ray flux during a flare penetrates down to the lowest-lying D-region and dominates ionization at these altitudes (60-100 km). Measurements of very low frequency (VLF: 3-30kHz) radio waves that reflect at D-region altitudes provide a unique remote-sensing probe to investigate the D-region response to solar flare emissions. Here, using a combination of VLF amplitude measurements at 24kHz together with X-ray observations from the Geostationary Operational Environment Satellite (GOES) X-ray sensor, we present a large-scale statistical study of 334 solar flare events and their impacts on the D-region over the past solar cycle. Focusing on both GOES broadband X-ray channels, we investigate how the flare peak fluxes and position on the solar disk dictate an ionospheric response and extend this to investigate the characteristic time delay between incident X-ray flux and the D-region response. We show that the VLF amplitude linearly correlates with both the 1-8 A and 0.5-4 A channels, with correlation coefficients of 0.80 and 0.79, respectively. Unlike higher altitude ionospheric regions for which the location of the flare on the solar disk affects the ionospheric response, we find that the D-region response to solar flares does not depend on the flare location. By comparing the time delays between the peak X-ray fluxes in both GOES channels and VLF amplitudes, we find that there is an important difference between the D-region response and the X-ray spectral band. We also demonstrate for several flare events that show a negative time delay, the peak VLF amplitude matches with the impulsive 25-50 keV hard X-ray fluxes measured by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI).

Authors: Laura A. Hayes, Oscar S.D. O'Hara, Sophie A. Murray, Peter T. Gallagher
Projects: None

Publication Status: Accepted Solar Physics
Last Modified: 2021-09-15 08:44
Go to main E-Print page  Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI  Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands
Simultaneous ALMA-Hinode-IRIS observations on footpoint signatures of a soft X-ray loop-like microflare
Multiple electron acceleration instances during a series of solar
CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption
Sympathetic Filament Eruptions within a Fan-spine Magnetic System
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University