E-Print Archive

There are 4488 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux View all abstracts by submitter

Chaowei Jiang   Submitted: 2021-09-21 02:35

Magnetic flux ropes (MFRs) constitute the core structure of coronal mass ejections (CMEs), but hot debates remain on whether the MFR forms before or during solar eruptions. Furthermore, how flare reconnection shapes the erupting MFR is still elusive in three dimensions. Here we studied a new MHD simulation of CME initiation by tether-cutting magnetic reconnection in a single magnetic arcade. The simulation follows the whole life, including the birth and subsequent evolution, of an MFR during eruption. In the early phase, the MFR is partially separated from its ambient field by a magnetic quasi-separatrix layer (QSL) that has a double-J shaped footprint on the bottom surface. With the ongoing of the reconnection, the arms of the two J-shaped footprints continually separate from each other, and the hooks of the J shaped footprints expand and eventually become closed almost at the eruption peak time, and thereafter the MFR is fully separated from the un-reconnected field by the QSL. We further studied the evolution of the toroidal flux in the MFR and compared it with that of the reconnected flux. Our simulation reproduced an evolution pattern of increase-to-decrease of the toroidal flux, which is reported recently in observations of variations in flare ribbons and transient coronal dimming. The increase of toroidal flux is owing to the flare reconnection in the early phase that transforms the sheared arcade to twisted field lines, while its decrease is a result of reconnection between field lines in the interior of the MFR in the later phase.

Authors: Chaowei Jiang, Jun Chen, Aiying Duan, Xinkai Bian, Xinyi Wang, Jiaying Li, Peng Zou, Xueshang Feng
Projects: None

Publication Status: Accepted by Frontiers in Physics
Last Modified: 2021-09-22 09:43
Go to main E-Print page  CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption  Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University