E-Print Archive

There are 4423 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Spatial and Temporal Variations of Turbulence in a Solar Flare View all abstracts by submitter

Morgan Stores   Submitted: 2021-10-12 09:03

Magnetohydrodynamic (MHD) plasma turbulence is believed to play a vital role in the production of energetic electrons during solar flares and the non-thermal broadening of spectral lines is a key sign of this turbulence. Here, we determine how flare turbulence evolves in time and space using spectral profiles of Fe xxiv, Fe xxiii and Fe xvi, observed by Hinode/EIS. Maps of non-thermal velocity are created for times covering the X-ray rise, peak, and decay. For the first time, the creation of kinetic energy density maps reveal where energy is available for energization, suggesting that similar levels of energy may be available to heat and/or accelerate electrons in large regions of the flare. We find that turbulence is distributed throughout the entire flare; often greatest in the coronal loop tops, and decaying at different rates at different locations. For hotter ions (Fe xxiv and Fe xxiii), the non-thermal velocity decreases as the flare evolves and during/after the X-ray peak shows a clear spatial variation decreasing linearly from the loop apex towards the ribbon. For the cooler ion (Fe xvi), the non-thermal velocity remains relativity constant throughout the flare, but steeply increases in one region corresponding to the southern ribbon, peaking just prior to the peak in hard X-rays before declining. The results suggest turbulence has a more complex temporal and spatial structure than previously assumed, while newly introduced turbulent kinetic energy maps show the availability of the energy and identify important spatial inhomogeneities in the macroscopic plasma motions leading to turbulence.

Authors: Morgan Stores, Natasha L. S. Jeffrey, Eduard P. Kontar
Projects: Hinode/EIS

Publication Status: Preprint
Last Modified: 2021-10-13 13:06
Go to main E-Print page  Thomson scattering in the lower corona in the presence of sunspots  Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands
Simultaneous ALMA-Hinode-IRIS observations on footpoint signatures of a soft X-ray loop-like microflare
Multiple electron acceleration instances during a series of solar
CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption
Sympathetic Filament Eruptions within a Fan-spine Magnetic System
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University