E-Print Archive

There are 4438 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Numerical Simulation of a Fundamental Mechanism of Solar Eruption with Different Magnetic Flux Distributions View all abstracts by submitter

Chaowei Jiang   Submitted: 2021-11-16 04:35

Solar eruptions are explosive release of coronal magnetic field energy as manifested in solar flares and coronal mass ejection. Observations have shown that the core of eruption-productive regions are often a sheared magnetic arcade, i.e., a single bipolar configuration, and, particularly, the corresponding magnetic polarities at the photosphere are elongated along a strong-gradient polarity inversion line (PIL). It remains unclear what mechanism triggers the eruption in a single bipolar field and why the one with a strong PIL is eruption-productive. Recently, using high accuracy simulations, we have established a fundamental mechanism of solar eruption initiation that a bipolar field as driven by quasi-static shearing motion at the photosphere can form an internal current sheet, and then fast magnetic reconnection triggers and drives the eruption. Here we investigate the behavior of the fundamental mechanism with different photospheric magnetic flux distributions, i.e., magnetograms, by combining theoretical analysis and numerical simulation. Our study shows that the bipolar fields of different magnetograms, as sheared continually, all exhibit similar evolutions from the slow storage to fast release of magnetic energy in accordance with the fundamental mechanism, which demonstrates the robustness of the mechanism. We further found that the magnetograms with stronger PIL produce larger eruptions, and the key reason is that the sheared bipolar fields with stronger PIL can achieve more non-potentiality, and their internal current sheet can form at a lower height and with a larger current density, by which the reconnection can be more efficient. This also provides a viable trigger mechanism for the observed eruptions in active region with strong PIL.

Authors: Xinkai Bian, Chaowei Jiang, Xueshang Feng, Pingbing Zuo, Yi Wang, Xinyi Wang
Projects: None

Publication Status: Accepted by A&A
Last Modified: 2021-11-17 13:12
Go to main E-Print page  Direct evidence that twisted flux tube emergence creates solar active regions  Toward Improved Understanding of Magnetic Fields Participating in Solar Flares: Statistical Analysis of Magnetic Field within Flare Ribbons  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions
Numerical Simulation of a Fundamental Mechanism of Solar Eruption with Different Magnetic Flux Distributions
Toward Improved Understanding of Magnetic Fields Participating in Solar Flares: Statistical Analysis of Magnetic Field within Flare Ribbons
Torus-Stable Zone Above Starspots
Constraining the CME Core Heating and Energy Budget with SOHO/UVCS
The solar corona as an active medium for magnetoacoustic waves
Rapid Evolution of Bald Patches in a Major Solar Eruption
Evaluating Pointing Strategies for Future Solar Flare Missions
Common origin of quasi-periodic pulsations in microwave and decimetric solar radio bursts
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University