E-Print Archive

There are 4488 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Implications of spicule activity on coronal loop heating and catastrophic cooling View all abstracts by submitter

Nived Vilangot Nhalil   Submitted: 2021-11-25 05:11

We report on the properties of coronal loop foot-point heating with observations at the highest resolution, from the CRisp Imaging Spectro-Polarimeter (CRISP) located at the Swedish 1-m Solar Telescope (SST) and co-aligned NASA Solar Dynamics Observatory (SDO) observations, of Type II spicules in the chromosphere and their signatures in the EUV corona. Here, we address one important issue, as to why there is not always a one-to-one correspondence, between Type II spicules and hot coronal plasma signatures, i.e. beyond TR temperatures. We do not detect any difference in their spectral properties in a quiet Sun region compared to a region dominated by coronal loops. On the other hand, the number density close to the foot-points in the active region is found to be an order of magnitude higher than in the quiet Sun case. A differential emission measure analysis reveals a peak at ∼5 105 K on the order of 1022 cm-5 K-1. Using this result as a constraint, we conduct numerical simulations and show that with an energy input of 1.25 1024 erg (corresponding to ∼10 RBEs contributing to the burst) we manage to reproduce the observation very closely. However, simulation runs with lower thermal energy input do not reproduce the synthetic AIA 171 signatures, indicating that there is a critical number of spicules required in order to account for the AIA 171 signatures in the simulation. Furthermore, the higher energy (1.25 1024 ergs) simulations reproduce catastrophic cooling with a cycle duration of ∼5 hours, matching a periodicity we observe in the EUV observations.

Authors: V N Nived, E Scullion, J G Doyle, R Susino, P Antolin, D Spadaro, C Sasso, S Sahin, M Mathioudakis
Projects: SDO-AIA,Swedish Solar Telescope (SST)

Publication Status: Published in MNRAS
Last Modified: 2021-11-26 09:15
Go to main E-Print page  Overdense Threads in the Solar Corona Induced by Torsional Alfvn Waves  The Magnetic Origin of Solar Campfires  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University