E-Print Archive

There are 4452 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Implications of spicule activity on coronal loop heating and catastrophic cooling View all abstracts by submitter

Nived Vilangot Nhalil   Submitted: 2021-11-25 05:11

We report on the properties of coronal loop foot-point heating with observations at the highest resolution, from the CRisp Imaging Spectro-Polarimeter (CRISP) located at the Swedish 1-m Solar Telescope (SST) and co-aligned NASA Solar Dynamics Observatory (SDO) observations, of Type II spicules in the chromosphere and their signatures in the EUV corona. Here, we address one important issue, as to why there is not always a one-to-one correspondence, between Type II spicules and hot coronal plasma signatures, i.e. beyond TR temperatures. We do not detect any difference in their spectral properties in a quiet Sun region compared to a region dominated by coronal loops. On the other hand, the number density close to the foot-points in the active region is found to be an order of magnitude higher than in the quiet Sun case. A differential emission measure analysis reveals a peak at ∼5 105 K on the order of 1022 cm-5 K-1. Using this result as a constraint, we conduct numerical simulations and show that with an energy input of 1.25 1024 erg (corresponding to ∼10 RBEs contributing to the burst) we manage to reproduce the observation very closely. However, simulation runs with lower thermal energy input do not reproduce the synthetic AIA 171 signatures, indicating that there is a critical number of spicules required in order to account for the AIA 171 signatures in the simulation. Furthermore, the higher energy (1.25 1024 ergs) simulations reproduce catastrophic cooling with a cycle duration of ∼5 hours, matching a periodicity we observe in the EUV observations.

Authors: V N Nived, E Scullion, J G Doyle, R Susino, P Antolin, D Spadaro, C Sasso, S Sahin, M Mathioudakis
Projects: SDO-AIA,Swedish Solar Telescope (SST)

Publication Status: Published in MNRAS
Last Modified: 2021-11-26 09:15
Go to main E-Print page  Overdense Threads in the Solar Corona Induced by Torsional Alfvn Waves  The Magnetic Origin of Solar Campfires  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Spectral Power-law Formation by Sequential Particle Acceleration in Multiple Flare Magnetic Islands
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University