E-Print Archive

There are 4488 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament View all abstracts by submitter

Jialin Chen   Submitted: 2021-11-28 18:56

We investigate the failed partial eruption of a filament system in NOAA AR 12104 on 2014 July 5, using multiwavelength EUV, magnetogram, and Hα observations, as well as magnetic field modeling. The filament system consists of two almost co-spatial segments with different end points, both resembling a C shape. Following an ejection and a precursor flare related to flux cancellation, only the upper segment rises and then displays a prominent twisted structure, while rolling over toward its footpoints. The lower segment remains undisturbed, indicating that the system possesses a double-decker structure. The erupted segment ends up with a reverse-C shape, with material draining toward its footpoints, while losing its twist. Using the flux rope insertion method, we construct a model of the source region that qualitatively reproduces key elements of the observed evolution. At the eruption onset, the model consists of a flux rope atop a flux bundle with negligible twist, which is consistent with the observational interpretation that the filament possesses a double-decker structure. The flux rope reaches the critical height of the torus instability during its initial relaxation, while the lower flux bundle remains in stable equilibrium. The eruption terminates when the flux rope reaches a dome-shaped quasi-separatrix layer that is reminiscent of a magnetic fan surface, although no magnetic null is found. The flux rope is destroyed by reconnection with the confining overlying flux above the dome, transferring its twist in the process.

Authors: Jialin Chen, Yingna Su, Rui Liu, Bernhard Kliem, Qingmin Zhang, Haisheng Ji, Tie Liu
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2021-11-29 14:57
Go to main E-Print page  Variations of the Internal Asymmetries of Sunspot Groups During their   Decay  Overdense Threads in the Solar Corona Induced by Torsional Alfvn Waves  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University