E-Print Archive

There are 4451 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions View all abstracts by submitter

Callum Boocock   Submitted: 2021-12-06 04:56

We derive a corrected analytical solution for the propagation and enhanced phase mixing of torsional Alfvén waves, in a potential magnetic field with exponentially divergent field lines, embedded in a stratified solar corona. Further we develop a code named TAWAS which calculates the analytic solution describing torsional Alfvén waves using IDL software language. We then use TAWAS to demonstrate that both our correction to the analytic solution and the inclusion of wave reflection have a significant impact on Alfvén wave damping. We continue to utilise TAWAS by performing a parameter study in order to identify the conditions under which enhanced phase mixing is strongest. We find that phase mixing is the strongest for high frequency Alfvén waves in magnetic fields with highly divergent field lines and without density stratification. We then present a finite difference solver, Wigglewave, which solves the linearised evolution equations for the system directly. Comparing solutions from TAWAS and Wigglewave we see that our analytical solution is accurate within the limits of the WKB approximation but under-reports the wave damping, caused by enhanced phase mixing, beyond the WKB limit. Both TAWAS and Wigglewave solve the linearised governing equations and not the complete nonlinear MHD equations. Paper II will consider simulations that solve the full MHD equations including important nonlinear effects.

Authors: Callum Boocock, David Tsiklauri
Projects: None

Publication Status: Published in MNRAS
Last Modified: 2021-12-07 17:57
Go to main E-Print page  Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections   Variations of the Internal Asymmetries of Sunspot Groups During their   Decay  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University