E-Print Archive

There are 4488 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations View all abstracts by submitter

Callum Boocock   Submitted: 2021-12-24 12:30

We use MHD simulations to detect the nonlinear effects of torsional Alfvén wave propagation in a potential magnetic field with exponentially divergent field lines, embedded in a stratified solar corona. In Paper I we considered solutions to the linearised governing equations for torsional Alfvén wave propagation and showed, using a finite difference solver we developed named WiggleWave, that in certain scenarios wave damping is stronger than what would be predicted by our analytic solutions. In this paper we consider whether damping would be further enhanced by the presence of nonlinear effects. We begin by deriving the nonlinear governing equations for torsional Alfvén wave propagation and identifying the terms that cause coupling to magnetosonic perturbations. We then compare simulation outputs from an MHD solver called Lare3d, which solves the full set of nonlinear MHD equations, to the outputs from WiggleWave to detect nonlinear effects such as: the excitation of magnetosonic waves by the Alfvén wave, self-interaction of the Alfvén wave through coupling to the induced magnetosonic waves, and the formation of shock waves higher in the atmosphere caused by the steepening of these compressive perturbations. We suggest that the presence of these nonlinear effects in the solar corona would lead to Alfvén wave heating that exceeds the expectation from the phase mixing alone.

Authors: C.Boocock and D.Tsiklauri
Projects: None

Publication Status: Accepted MNRAS
Last Modified: 2021-12-27 19:58
Go to main E-Print page  Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)  Multi-Passband Observations of A Solar Flare over the He I 10830  line  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University