E-Print Archive

There are 4488 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Plasma dynamics in the flaring loop observed by RHESSI View all abstracts by submitter

Tomasz Mrozek   Submitted: 2022-01-07 03:47

Hard X-rays (HXRs) contain the most direct information about the non-thermal electron population in solar flares. The approximation of the HXR emission mechanism (bremsstrahlung), known as the thick-target model, is well developed. It allows one to diagnose the physical conditions within a flaring structure. The thick-target model predicts that in flare foot points, we should observe lowering of HXR sources' altitude with increasing energy. The foot point of HXR sources result from the direct interaction of non-thermal electron beams with plasma in the lower part of the solar atmosphere, where the density increases rapidly. Therefore, we can estimate the plasma density distribution along the non-thermal electron beam directly from the observations of the altitude-energy relation obtained for the HXR foot point sources. However, the relation is not only density-dependent. Its shape is also determined by the power-law distribution of non-thermal electrons. Additionally, during the impulsive phase, the plasma density and a degree of ionisation within foot points may change dramatically due to heating and chromospheric evaporation. For this reason, the interpretation of observed HXR foot point sources' altitudes is not straightforward and needs detailed numerical modelling of the electron precipitation process. We present the results of numerical modelling of one well-observed solar flare. We used HXR observations obtained by RHESSI. The numerical model was calculated using the hydrodynamic 1D model with an application of the Fokker-Planck formalism for non-thermal beam precipitation. HXR data were used to trace chromospheric density changes during a non-thermal emission burst, in detail. We have found that the amount of mass that evaporated from the chromosphere is in the range of 2.7x1013-4.0x1014{g}. This is in good agreement with the ranges obtained from hydrodynamical modelling of a flaring loop (2.3x1013-3.3x1013{g}), and from an analysis of observed emission measure in the loop top (3.9x1013-5.3x1013{g}). Additionally, we used specific scaling laws which gave another estimation of the evaporated mass around 2x1014{g}. Consistency between the obtained values shows that HXR images may provide an important constraint for models - a mass of plasma that evaporated due to a non-thermal electron beam depositing energy in the chromosphere. High-energy, non-thermal sources' (above 20 keV in this case) positions fit the column density changes obtained from the hydrodynamical model perfectly. Density changes seem to be less affected by the electrons' spectral index. The obtained results significantly improve our understanding of non-thermal electron beam precipitation and allow us to refine the energy balance in solar flare foot points during the impulsive phase.

Authors: Mrozek, T., Falewicz, R., Kołomański, S., Litwicka, M.
Projects: RHESSI

Publication Status: A&A accepted
Last Modified: 2022-01-07 09:36
Go to main E-Print page  Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere  Multi-instrument STIX microflare study  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University