E-Print Archive

There are 4451 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes View all abstracts by submitter

Andrei Chelpanov   Submitted: 2022-01-11 20:30

The subject of this study is oscillations in the lower atmosphere in coronal-hole regions, where the conditions are favorable for propagation between the atmospheric layers. Based on spectroscopic observations in photospheric and chromospheric lines, we analyzed the features of the oscillations that show signs of propagation between the layers of the solar atmosphere. Using the cross-spectrum wavelet algorithm, we found that both chromospheric and photospheric signals under coronal holes share a range of significant oscillations with periods around five minutes, while the signals outside coronal holes show no mutual oscillations in the photosphere and chromosphere. The phase shift between the layers indicates a predominantly upward propagation with partial presence of standing waves. We have also tested the assumption that the torsional Alfvén waves propagating in the corona originate in the lower atmosphere. However, the observed line-width oscillations, although similar in period to the Alfvén waves observed earlier in the corona of open-field regions, seem to be associated with other magnetohydrodynamic (MHD) modes. If we assume that the oscillations that we observed are related to Alfvén waves, then perhaps this is only through the mechanisms of the slow-MHD-wave transformation.

Authors: Andrei Chelpanov, Nikolai Kobanov, Maksim Chelpanov, Aleksandr Kiselev
Projects: None

Publication Status: Published in Solar Physics
Last Modified: 2022-01-12 13:27
Go to main E-Print page  Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade  Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University