E-Print Archive

There are 4512 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Ambipolar diffusion: Self-similar solutions and MHD code testing. Cylindrical symmetry View all abstracts by submitter

Fernando Moreno-Insertis   Submitted: 2022-04-02 05:32

Ambipolar diffusion is a process occurring in partially ionised astrophysical systems that imparts a complicated mathematical and physical nature to Ohm's law. The numerical codes that solve the magnetohydrodynamic (MHD) equations have to be able to deal with the singularities that are naturally created in the system by the ambipolar diffusion term. The global aim is to calculate a set of theoretical self-similar solutions to the nonlinear diffusion equation with cylindrical symmetry that can be used as tests for MHD codes which include the ambipolar diffusion term. First, following the general methods developed in the applied mathematics literature, we obtained the theoretical solutions as eigenfunctions of a nonlinear ordinary differential equation. Phase-plane techniques were used to integrate through the singularities at the locations of the nulls, which correspond to infinitely sharp current sheets. In the second half of the paper, we consider the use of these solutions as tests for MHD codes. To that end, we used the Bifrost code, thereby testing the capabilities of these solutions as tests as well as (inversely) the accuracy of Bifrost's recently developed ambipolar diffusion module. The obtained solutions are shown to constitute a demanding, but nonetheless viable, test for MHD codes that incorporate ambipolar diffusion. The Bifrost code is able to reproduce the theoretical solutions with sufficient accuracy up to very advanced diffusive times. Using the code, we also explored the asymptotic properties of our theoretical solutions in time when initially perturbed with either small or finite perturbations. The functions obtained in this paper are relevant as physical solutions and also as tests for general MHD codes. They provide a more stringent and general test than the simple Zeldovich-Kompaneets-Barenblatt-Pattle solution.

Authors: F. Moreno-Insertis, D. Nóbrega-Siverio, E. R. Priest, A. W. Hood
Projects: None

Publication Status: Accepted for publication in Astronomy & Astrophysics
Last Modified: 2022-04-02 11:47
Go to main E-Print page  Eigen vectors of solar magnetic field in cycles 21-24 and their links to solar activity indices  Statistical analysis of circular-ribbon flares  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University