E-Print Archive

There are 4512 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Eigen vectors of solar magnetic field in cycles 21-24 and their links to solar activity indices View all abstracts by submitter

Valentina Zharkova   Submitted: 2022-04-08 04:48

Using full disk synoptic maps of solar background magnetic field (SBMF) captured from the Wilcox Solar Observatory for 30 latitudinal bands for cycles 21-24 principal components (PCs), or eigen vectors of magnetic oscillations are obtained. The PCs are shown to come in pairs assigned to magnetic waves produced by dipole, quadruple, sextuple and octuple magnetic sources. The first pair is linked to dipole magnetic waves with their summary curve revealing a reasonable fit to the averaged sunspot numbers in cycles 21-24. This verifies the previous results and confirms the summary curve as additional proxy of solar activity decreasing towards grand solar minimum in cycles 25-27. There is also a noticeable asymmetry in latitudinal distributions of these PCs showing an increased activity in northern hemisphere in odd cycles and in southern hemisphere in even ones similar to the N-S asymmetries observed in sunspots. The second pair of PCs linked to quadruple magnetic sources, has 50% smaller amplitudes than the first, while their summary curve correlate closely with SXR fluxes in solar flares. Flare occurrences are also linked to variations of the next two pairs of eigen vectors, quadruple and sextuple components, revealing additional periodicity of about 2.75-3.1 years similar to observed oscillations in flares. Strong latitudinal asymmetries in quadruple and sextuple components are correlating with the N-S asymmetries of flare occurrences skewed to southern hemisphere in even cycles and to northern hemisphere in odd ones. PCA of solar magnetic field raises perspectives for simultaneous prediction of general and flaring solar activity.

Authors: Zharkova V.V. and Shepherd S.J.
Projects: None

Publication Status: MNRAS, published
Last Modified: 2022-04-10 00:17
Go to main E-Print page  Observations of Extremely Strong Magnetic Fields in Active Region NOAA 12673 Using GST Magnetic Field Measurement  Ambipolar diffusion: Self-similar solutions and MHD code testing. Cylindrical symmetry  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University