E-Print Archive

There are 4512 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observations of Extremely Strong Magnetic Fields in Active Region NOAA 12673 Using GST Magnetic Field Measurement View all abstracts by submitter

Vasyl Yurchyshyn   Submitted: 2022-04-14 08:12

We present a detailed study of very strong magnetic fields in the NOAA Active Region (AR) 12673, which was the most flare productive AR in solar cycle 24. It produced four X-class flares including the X9.3 flare on 2017 September 6 and the X8.2 limb event on September 10. Our analysis is based on direct measurements of full Zeeman splitting of the Fe I 1564.85 nm line using all Stokes I, Q, U, and V profiles. This approach allowed us to obtain reliable estimates of the magnitude of magnetic fields independent of the filling factor and atmosphere models. Thus, the strongest fields up to 5.5 kG were found in a light bridge (LB) of a spot, while in the dark umbra magnetic fields did not exceed 4 kG. In the case of the LB, the magnitude of the magnetic field is not related to the underlying continuum intensity, while in the case of umbral fields we observed a well-known anticorrelation between the continuum intensity and the field magnitude. In this study, the LB was cospatial with a polarity inversion line of a delta-sunspot, and we speculate that the 5.5 kG strong horizontal fields may be associated with a compact twisted flux rope at or near the photosphere. A comparison of the depth of the Zeeman π and \sigma components showed that in the LB magnetic fields are, on average, more horizontal than those in the dark umbra.

Authors: Vsevolod Lozitsky, Vasyl Yurchyshyn, Kwangsu Ahn, and Haimin Wang
Projects: BBSO/NST

Publication Status: Published in ApJ
Last Modified: 2022-04-15 08:28
Go to main E-Print page  Microwave Perspective on Magnetic Breakout Eruption  Eigen vectors of solar magnetic field in cycles 21-24 and their links to solar activity indices  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University