E-Print Archive

There are 4512 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare View all abstracts by submitter

Melissa Pesce Rollins   Submitted: 2022-04-27 07:50

We present the Fermi-LAT observations of the behind-the-limb (BTL) flare of 2021 July 17 and the joint detection of this flare by STIX on board the Solar Orbiter. The separation between Earth and the Solar Orbiter was 99.2 degrees at 05:00 UT, allowing STIX to have a front view of the flare. The location of the flare was S20E140 in Stonyhurst heliographic coordinates, making this the most distant behind-the-limb flare ever detected in >100 MeV gamma-rays. The LAT detection lasted for ∼16 minutes, the peak flux was 3.6 0.8 (10-5) ph cm-2 s-1 with a significance >15σ. A coronal wave was observed from both STEREO-A and SDO in extreme ultraviolet (EUV), with an onset on the visible disk in coincidence with the LAT onset. A complex type II radio burst was observed by GLOSS also in coincidence with the onset of the LAT emission, indicating the presence of a shock wave. We discuss the relation between the time derivative of the EUV wave intensity profile at 193 as observed by STEREO-A and the LAT flux to show that the appearance of the coronal wave at the visible disk and the acceleration of protons as traced by the observed >100 MeV gamma-ray emission are coupled. We also report how this coupling is present in the data from three other BTL flares detected by Fermi-LAT, suggesting that the protons driving the gamma-ray emission of BTL solar flares and the coronal wave share a common origin.

Authors: Melissa Pesce-Rollins, Nicola Omodei, Säm Krucker, Niccolo' Di Lalla, Wen Wang, Andrea F. Battaglia, Alexander Warmuth, Astrid M. Veronig and Luca Baldini
Projects: Fermi/LAT

Publication Status: Published in ApJ
Last Modified: 2022-04-27 08:36
Go to main E-Print page  Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes  Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University