E-Print Archive

There are 4512 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview View all abstracts by submitter

Roberto Soler   Submitted: 2022-05-05 02:58

Partially ionized plasmas (PIP) are essential constituents of many astrophysical environments, including the solar atmosphere, the interstellar medium, molecular clouds, accretion disks, planet ionospheres, cometary tails, etc., where the ionization degree may vary from very weak ionization to almost full ionization. The dynamics of PIP is heavily affected by the interactions between the various charged and neutral species that compose the plasma. It has been shown that partial ionization effects influence the triggering and development of fluid instabilities as, e.g., Kelvin-Helmholtz, Rayleigh-Taylor, thermal, and magneto-rotational instabilities, among others. Here we review the theory of some classic fluid instabilities that are present in PIP and highlight the unique effects introduced by partial ionization. The main emphasis of the review is put on instabilities in the partially ionized solar atmospheric plasma, although other astrophysical applications are also mentioned. We focus on the mathematical and theoretical investigation of the onset and exponential growth of the instabilities. Results of the nonlinear evolution obtained from full numerical simulations are also discussed.

Authors: R. Soler, J. L. Ballester
Projects: None

Publication Status: Published in Frontiers in Astronomy and Space Sciences
Last Modified: 2022-05-07 16:32
Go to main E-Print page  Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24  Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University