E-Print Archive

There are 4512 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Small-scale solar jet formation and their associated waves and instabilities View all abstracts by submitter

Samuel Skirvin   Submitted: 2022-05-20 03:01

Studies on small-scale jets' formation, propagation, evolution, and role, such as type I and II spicules, mottles, and fibrils in the lower solar atmosphere's energetic balance, have progressed tremendously thanks to the combination of detailed observations and sophisticated mathematical modelling. This review provides a survey of the current understanding of jets, their formation in the solar lower atmosphere, and their evolution from observational, numerical, and theoretical perspectives. First, we review some results to describe the jet properties, acquired numerically, analytically and through high-spatial and temporal resolution observations. Further on, we discuss the role of hydrodynamic and magnetohydrodynamic instabilities, namely Rayleigh-Taylor and Kelvin-Helmholtz instabilities, in jet evolution and their role in the energy transport through the solar atmosphere in fully and partially ionised plasmas. Finally, we discuss several mechanisms of magnetohydrodynamic wave generation, propagation, and energy transport in the context of small-scale solar jets in detail. This review identifies several gaps in the understanding of small-scale solar jets and some misalignments between the observational studies and knowledge acquired through theoretical studies and numerical modelling. It is to be expected that these gaps will be closed with the advent of high-resolution observational instruments, such as Daniel K. Inouye Solar Telescope, Solar Orbiter, Parker Solar Probe, and Solar CubeSats for Linked Imaging Spectropolarimetry, combined with further theoretical and computational developments.

Authors: Samuel Skirvin, Gary Verth, José Juan González-Avilés, Sergiy Shelyag, Rahul Sharma, Francisco S. Guzmán, Istvan Ballai, Eamon Scullion, Suzana Silva, Viktor Fedun
Projects: None

Publication Status: Accepted
Last Modified: 2022-05-23 11:27
Go to main E-Print page  Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection  Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University