E-Print Archive

There are 4512 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares View all abstracts by submitter

Xin Cheng   Submitted: 2022-05-27 01:28

Microflares, one of the small-scale solar activities, are believed to be caused by magnetic reconnection. Nevertheless, their three-dimensional (3D) magnetic structures, thermodynamic structures, and physical links to reconnection are unclear. In this Letter, based on a high-resolution 3D radiative magnetohydrodynamic simulation of the quiet Sun spanning from the upper convection zone to the corona, we investigate the 3D magnetic and thermodynamic structures of three homologous microflares. It is found that they originate from localized hot plasma embedded in the chromospheric environment at the height of 2-10 Mm above the photosphere and last for 3-10 mins with released magnetic energy in the range of 1027-1028 erg. The heated plasma is almost cospatial with the regions where the heating rate per particle is maximal. The 3D velocity field reveals a pair of converging flows with velocities of tens of km s-1 moving toward and outflows with velocities of about 100 km s-1 moving away from the hot plasma. These features support magnetic reconnection playing a critical role in heating the localized chromospheric plasma to coronal temperature, giving rise to the observed microflares. The magnetic topology analysis further discloses that the reconnection region is located near quasi-separators where both current density and squashing factors are maximal although the specific topology may vary from a tether-cutting to fan-spine-like structure.

Authors: Li, Z. F., Cheng, X., Chen, F., Chen, J. & Ding, M. D.
Projects: None

Publication Status: 2022ApJ...930L...7L
Last Modified: 2022-05-27 09:28
Go to main E-Print page  Annihilation of Magnetic Islands at the Top of Solar Flare Loops  Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University