E-Print Archive

There are 4512 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Annihilation of Magnetic Islands at the Top of Solar Flare Loops View all abstracts by submitter

Xin Cheng   Submitted: 2022-05-27 01:31

The dynamics of magnetic reconnection in the solar current sheet (CS) is studied by high-resolution 2.5-dimensional MHD simulation. With the commencing of magnetic reconnection, a number of magnetic islands are formed intermittently and move quickly upward and downward along the CS. Upon collision with the semi-closed flux of the flare loops, the downflow islands cause a second reconnection with a rate comparable with that in the main CS. Though the time-integrated magnetic energy release is still dominated by the reconnection in the main CS, the second reconnection can release substantial magnetic energy, annihilating the main islands and generating secondary islands with various scales at the flare loop top. The distribution function of the flux of the secondary islands is found to follow a power law varying from f(ψ)∼ψ^-1 (small scale) to ψ^-2 (large scale), which seems to be independent to background plasma β and thermal conduction (TC). However, the spatial scale and the strength of the termination shocks driven by the main reconnection outflows or islands decrease if β increases or if TC is included. We suggest that the annihilation of magnetic islands at the flare loop top, which is not included in the standard flare model, plays a nonnegligible role in releasing magnetic energy to heat flare plasma and accelerate particles.

Authors: Yulei Wang, Xin Cheng, Mingde Ding and Quanming Lu
Projects: None

Publication Status: 2021ApJ...923..227W
Last Modified: 2022-05-27 09:28
Go to main E-Print page  Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares  Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University