E-Print Archive

There are 4512 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes View all abstracts by submitter

Andrew Inglis   Submitted: 2022-06-02 09:21

Analyses of quasi-periodic oscillations (QPOs) are important to understanding the dynamic behaviour in many astrophysical objects during transient events like gamma-ray bursts, solar flares, magnetar flares and fast radio bursts. Astrophysicists often search for QPOs with frequency-domain methods such as (Lomb-Scargle) periodograms, which generally assume power-law models plus some excess around the QPO frequency. Time-series data can alternatively be investigated directly in the time domain using Gaussian Process (GP) regression. While GP regression is computationally expensive in the general case, the properties of astrophysical data and models allow fast likelihood strategies. Heteroscedasticity and non-stationarity in data have been shown to cause bias in periodogram-based analyses. Gaussian processes can take account of these properties. Using GPs, we model QPOs as a stochastic process on top of a deterministic flare shape. Using Bayesian inference, we demonstrate how to infer GP hyperparameters and assign them physical meaning, such as the QPO frequency. We also perform model selection between QPOs and alternative models such as red noise and show that this can be used to reliably find QPOs. This method is easily applicable to a variety of different astrophysical data sets. We demonstrate the use of this method on a range of short transients: a gamma-ray burst, a magnetar flare, a magnetar giant flare, and simulated solar flare data.

Authors: M. Hübner, D. Huppenkothen, P. D. Lasky, A. R. Inglis, C. Ick, D. W. Hogg
Projects: None

Publication Status: ApJ (submitted)
Last Modified: 2022-06-03 14:54
Go to main E-Print page  Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening   Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University